Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Titanium alloys are widely used in the manufacture of gas turbines’ compressor blades. Elucidating their mechanical behavior and strength under damaged conditions is the key to evaluating the equipment’s reliability. However, the conventional Johnson-Cook (J-C) constitutive model has limitations in describing the dynamic response of titanium alloy materials under the impact of a high strain rate. In order to solve this problem, the mechanical behavior of a TC4 titanium alloy under high strain rate and different temperature conditions was analyzed by combining experiments and numerical simulations. In this study, the parameters of the J-C model were analyzed in detail, and an improved J-C constitutive model is proposed, based on the new mechanism of the strain rate strengthening effect and the temperature softening effect, which improves the accuracy of the description of strain sensitivity and temperature dependence. Finally, the VUMAT subroutine of ABAQUS software was used for numerical simulation, and the predictive ability of the improved model was verified. The simulation results showed that the maximum prediction error of the traditional J-C model was 23.6%, while the maximum error of the improved model was reduced to 5.6%. This indicates that the improved J-C constitutive model can more accurately predict the mechanical response of a titanium alloy under an impact load and provides a theoretical basis for the study of the mechanical properties of titanium alloy blades under subsequent conditions of foreign object damage.
Titanium alloys are widely used in the manufacture of gas turbines’ compressor blades. Elucidating their mechanical behavior and strength under damaged conditions is the key to evaluating the equipment’s reliability. However, the conventional Johnson-Cook (J-C) constitutive model has limitations in describing the dynamic response of titanium alloy materials under the impact of a high strain rate. In order to solve this problem, the mechanical behavior of a TC4 titanium alloy under high strain rate and different temperature conditions was analyzed by combining experiments and numerical simulations. In this study, the parameters of the J-C model were analyzed in detail, and an improved J-C constitutive model is proposed, based on the new mechanism of the strain rate strengthening effect and the temperature softening effect, which improves the accuracy of the description of strain sensitivity and temperature dependence. Finally, the VUMAT subroutine of ABAQUS software was used for numerical simulation, and the predictive ability of the improved model was verified. The simulation results showed that the maximum prediction error of the traditional J-C model was 23.6%, while the maximum error of the improved model was reduced to 5.6%. This indicates that the improved J-C constitutive model can more accurately predict the mechanical response of a titanium alloy under an impact load and provides a theoretical basis for the study of the mechanical properties of titanium alloy blades under subsequent conditions of foreign object damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.