In true triaxial compression tests, all three principal stresses are imposed independently. This allows for a more comprehensive analysis of the material's mechanical properties. The end effect in true triaxial compression tests is a crucial phenomenon that impacts the accuracy and reliability of the test results. In this study, a series of true triaxial compression tests is conducted to examine the influence of the end friction on the mechanical properties. The laboratory results show that the presence of the end friction could bring about an apparent increase in rock strength and also restrict the deformation in each direction showing that the stiffness (the slope of the curves) increased slightly. The rock strength could be enhanced from 24.7 to 90.7 () when the end friction is increased, which is mainly caused by the lateral interface friction. The failure mode and fracture angle of the specimen are also influenced by the end effect, showing that under high friction conditions, the failure is more ductile, and a larger fracture angle is observed. At last, in comparison with the published experimental data, the actual specific friction angle (corresponding friction coefficient is about 0.19) for the direct specimen–metal contacts in a true 3D test is numerically identified, which is empirically reasonable and higher than the tested range 0.146–0.157 obtained from double‐shear test system.