Optical fiber platforms are promising for plasmonics research and applications, thanks to their compactness, flexibility, and cost-effectiveness, which are further leveraged by easy accessibility to numerous fiberized sources and devices. In this chapter, the author particularly pays attention to novel surface plasmon polariton (SPP) devices implemented onto optical fiber platforms. First, the author investigates novel circular metallic nanoslit-based optical fiber facets for the generation of axially symmetric SPPs with significantly enhanced noise characteristics. Second, the author investigates novel metallic Fresnel-zone-plate optical fiber facets for super-variable focusing with incident wavelength and for selective focusing with incident polarization. Third, the author investigates novel metal-coated angled optical fiber facets for versatile SPP coupling and its application to wavelength-dependent off-axis beaming, which offer high efficiency, unidirectionality, and perfect compatibility with fiberized light sources. The author expects that these investigations will broaden both fiber optics and plasmonics research fields, and also be useful for various novel applications, including micro-/nanomachining, optical trapping, and biomedical sensing, for example.