The U.S. Environmental Protection Agency (EPA), the Florida Department of Environmental Protection (FLDEP), and Texas A&M University collaborated in the design, construction, and testing of a unique, highly crosslinked, Teflon-coated inlet and manifold gas and aerosol sampling system that is being used in EPA aircraft atmospheric pollution characterization studies. The aircraftborne ambient sampling system, which consists of a Teflon-coated shrouded probe coupled to a Teflon-coated aluminum manifold, is designed to collect reactive gases (e.g., mercury and halide species) and aerosols for subsequent analysis and characterization. The shrouded inlet probe was tested for particle transmission ratios in a high-speed aerosol wind tunnel. An existing wind tunnel was upgraded from a maximum wind speed of 13.4 m/s (48 km/h or 30 miles/h) to 50.5 m/s (182 km/h or 113 miles/h) to test this probe. The wind tunnel was evaluated for compliance with the criteria of ANSI 13.1 to establish the acceptability of its use in testing probes. The results demonstrated that the velocity and tracer gas concentration profiles were within the specified limits. A wellcharacterized ThermoAndersen Shrouded Probe (Model RF-2-112) was also tested to check tunnel performance and test methodology. These findings suggest that shrouded probes can be used for low speed (∼100 miles/h) aircraft applications. The transmission ratio of these probes is a significant improvement over the conventional aircraft-mounted, sharp-edged isokinetic diffuser-type inlets.