This work deals with the investigation of radiation models for combustion spray. The n-pentane fuel C5h12 is used for chemical reactions with the air. The main objective of these simulations is to compare the experimental data and radiation models for spray combustion and to select the best radiation model. The model is used to interpret the structure and properties of the prediction for spray combustion. The simulated cases are carried out using Ansys Fluent. The mixture fracture probability density function is used to evaluate the non-premixed combustion of vaporized fuel droplets. The Radiation models (p1, discrete coordinate, surface to surface, and Roseland) are used to predict local properties in two dimensions. The results of the numerical simulation are compared with the experimental data. The results showed that the p1 radiation model provides good results through temperature, turbulence kinetic energy, and velocity components.