2018
DOI: 10.1007/s10013-018-0300-4
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Tensor Techniques for Multidimensional Convolution Products

Abstract: In order to treat high-dimensional problems, one has to find data-sparse representations. Starting with a six-dimensional problem, we first introduce the low-rank approximation of matrices. One purpose is the reduction of memory requirements, another advantage is that now vector operations instead of matrix operations can be applied. In the considered problem, the vectors correspond to grid functions defined on a three-dimensional grid. This leads to the next separation: these grid functions are tensors in R n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?