2005
DOI: 10.1007/s00010-004-2745-7
|View full text |Cite
|
Sign up to set email alerts
|

On distant-isomorphisms of projective lines

Abstract: We determine all distant-isomorphisms between projective lines over semilocal rings. In particular, for those semisimple rings that do not have a simple component which is isomorphic to a field, every distant isomorphism arises from a Jordan isomorphism of rings and a projectivity. We show this by virtue of a one-one correspondence linking the projective line over a semisimple ring with a Segre product of Grassmann spaces. (2000). 51C05, 51A10, 51A45, 17C50. Mathematics Subject Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
14
0
5

Year Published

2008
2008
2017
2017

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 18 publications
(19 citation statements)
references
References 27 publications
0
14
0
5
Order By: Relevance
“…(1, 0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,4), (6,10), (6,14).…”
unclassified
“…(1, 0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,4), (6,10), (6,14).…”
unclassified
“…If g∩h =: W is a point at infinity, we choose lines g 1 , g 2 , g 3 := g, h 1 , h 2 , h 3 := h as described in Property 4. Let X ij be the intersection of g i and h j for all i, j = 1, 2, 3 with (i, j) = (3,3). X ij are finite points, so X ϕ ij are defined.…”
Section: Proof Of Theoremmentioning
confidence: 99%
“…(1, 1), (1,2), (1,9), (1,11), (1,12), (1,13), (1,0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,…”
Section: проективные кривые над кольцом включающие в себя два-кубитыunclassified
“…набору из пяти взаимно некоммутирующих операторов (рис. 1 б), в то время как вторая отвечала решетке из девяти точек на шести ли-ниях 2) , связанной с квадратом операторов Мермина (рис. 1 в).…”
Section: проективные кривые над кольцом включающие в себя два-кубитыunclassified
See 1 more Smart Citation