We discuss the notion of the well productivity index (PI) for the generalized Forchheimer flow of fluid through porous media. The PI characterizes the well capacity with respect to drainage area of the well and in general is time dependent. In case of the slightly compressible fluid the PI stabilizes in time to the specific value, determined by the so-called pseudo steady state solution, [5, 3, 4]. Here we generalize our results from [4] in case of arbitrary order of the nonlinearity of the flow. In case of the compressible gas flow the mathematical model of the PI is studied for the first time. In contrast to slightly compressible fluid the PI stays "almost" constant for a long period of time, but then it blows up as time approaches the certain critical value. This value depends on the initial data (initial reserves) of the reservoir. The "greater" are the initial reserves, the larger is this critical value. We present numerical and theoretical results for the time asymptotic of the PI and its stability with respect to the initial data.