Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.