2015
DOI: 10.1002/asi.23284
|View full text |Cite
|
Sign up to set email alerts
|

On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages

Abstract: Millions of micro texts are published every day on Twitter. Identifying the sentiment present in them can be helpful for measuring the frame of mind of the public, their satisfaction with respect to a product or their support of a social event. In this context, polarity classification is a subfield of sentiment analysis focussed on determining whether the content of a text is objective or subjective, and in the latter case, if it conveys a positive or a negative opinion. Most polarity detection techniques tend… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
31
0
3

Year Published

2015
2015
2021
2021

Publication Types

Select...
6
2
2

Relationship

4
6

Authors

Journals

citations
Cited by 48 publications
(35 citation statements)
references
References 41 publications
1
31
0
3
Order By: Relevance
“…Monolingual sentiment analysis systems have been created for languages belonging to a variety of language families, such as Afro-Asiatic (Aldayel and Azmi, Forthcoming), Indo-European (Vilares et al, 2015a;Vilares et al, 2015b;Ghorbel and Jacot, 2011;Scholz and Conrad, 2013;Neri et al, 2012;Habernal et al, 2014;Medagoda et al, 2013;Medagoda et al, 2013), Japonic (Arakawa et al, 2014), Sino-Tibetan (Vinodhini and Chandrasekaran, 2012;Zhang et al, 2009) and Tai-Kadai (Inrak and Sinthupinyo, 2010), among others.…”
Section: Multilingual Samentioning
confidence: 99%
“…Monolingual sentiment analysis systems have been created for languages belonging to a variety of language families, such as Afro-Asiatic (Aldayel and Azmi, Forthcoming), Indo-European (Vilares et al, 2015a;Vilares et al, 2015b;Ghorbel and Jacot, 2011;Scholz and Conrad, 2013;Neri et al, 2012;Habernal et al, 2014;Medagoda et al, 2013;Medagoda et al, 2013), Japonic (Arakawa et al, 2014), Sino-Tibetan (Vinodhini and Chandrasekaran, 2012;Zhang et al, 2009) and Tai-Kadai (Inrak and Sinthupinyo, 2010), among others.…”
Section: Multilingual Samentioning
confidence: 99%
“…We describe the corpus developed for sentence polarity classification in section V-C, as we use this particular corpus for our experiments, summarised in section VI. Twitter has also been a popular subject, with various researchers tackling polarity classification on Tweets [12], [13], [14], [15].…”
Section: ) Polarity Classificationmentioning
confidence: 99%
“…En outre, des expériences ont montré que les méthodes basées sur les graphes de dépendances peuvent s'avérer nettement meilleures que les approches lexicales [14,26]. Nous avons donc choisi d'augmenter le corpus annoté sémantiquement à partir des caractéristiques syntaxiques des mots impliqués dans les termes annotés.…”
Section: Travaux Connexesunclassified