2020
DOI: 10.1186/s40854-020-00178-1
|View full text |Cite
|
Sign up to set email alerts
|

On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting

Abstract: This study investigates the volatility in daily stock returns for Total Nigeria Plc using nine variants of GARCH models: sGARCH, girGARCH, eGARCH, iGARCH, aGARCH, TGARCH, NGARCH, NAGARCH, and AVGARCH along with value at risk estimation and backtesting. We use daily data for Total Nigeria Plc returns for the period January 2, 2001 to May 8, 2017, and conclude that eGARCH and sGARCH perform better for normal innovations while NGARCH performs better for student t innovations. This investigation of the volatility,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 33 publications
(10 citation statements)
references
References 35 publications
0
7
0
1
Order By: Relevance
“…In terms of stock volatility, academic researchers used to make the forecasts by traditional GARCH models using indicators based on the past behavior of stock price and volatility (Gokcan 2000 ; Emenogu et al 2020 ). More recent studies become aware of issues such as parametric assumptions, leverage and asymmetric effects, and power transformations and long memory (e.g., Brooks 2007 ; Bandi and Reno 2012 ; Hou 2013 ).…”
Section: Literature Reviewmentioning
confidence: 99%
“…In terms of stock volatility, academic researchers used to make the forecasts by traditional GARCH models using indicators based on the past behavior of stock price and volatility (Gokcan 2000 ; Emenogu et al 2020 ). More recent studies become aware of issues such as parametric assumptions, leverage and asymmetric effects, and power transformations and long memory (e.g., Brooks 2007 ; Bandi and Reno 2012 ; Hou 2013 ).…”
Section: Literature Reviewmentioning
confidence: 99%
“…At 99% Value-at-Risk, the model passed the backtesting test using the Unconditional and conditional coverage while 95% Value-at-Risk the model also passed using the unconditional coverage and passed using the conditional coverage. On the overall the estimated ARMA(1,0)-eGARCH(2,2) model is reliable (Nieppola, 2009).…”
Section: Discussion Of Resultsmentioning
confidence: 75%
“…At 99% Value-at-Risk, the model passed the backtesting test using the Unconditional and conditional coverage while 95% Value-at-Risk the model failed using the unconditional coverage and passed using the conditional coverage. On the average the model is reliable (Nieppola, 2009. The table 14 above presents the selection criteria values for weekly crude oil futures based on the student t and skewed student t distributions. The ARMA model favoured the ARMA(1,0) model while the competing GARCH models (that is sGARCH, eGARCH, TGARCH and apARCH) used a maximum lag of 2.…”
Section: Discussion Of Resultsmentioning
confidence: 99%
“…Por otra parte, Naimy y Hayek (2018) utilizan los modelos EWMA, GARCH (1,1) y EGARCH para pronosticar la volatilidad de una moneda virtual como la criptomoneda bitcoin; destacan la superioridad del modelo EGARCH que no solamente captura de mejor manera el efecto apalancamiento y los resultados MAE Y RMSE que tienden a presentar un pronóstico presumiblemente más efectivo. Emenogu et al (2020), en su estudio, investigan la volatilidad en los rendimientos diarios de activos del mercado de acciones petroleras nigeriano utilizando nueve variantes de la familia de modelos GARCH aplicando modelos VaR y backtesting, sobre el cual se concentra el estudio en éste último; de esta manera, para seleccionar al mejor modelo, ellos concluyen que los enfoques GARCH exponencial (eGARCH) y GARCH estándar (sGARCH) son los mejores al utilizar innovaciones normales, en tanto que el enfoque NGARCH es el mejor para el caso de inovaciones t-student con AIC.…”
Section: Revisión De Literaturaunclassified