In this study, the ultrasonic-assisted extraction of total coumarins from Peucedanum decursivum (Miq.) Maxim (P. decursivum) via the combination of deep eutectic solvents (DESs) with cellulase pretreatment was carried out. Among the 15 kinds of DESs with choline chloride as hydrogen bond acceptors, the DES system of choline chloride/1,4-butanediol with a molar ratio of 1:4 showed the best extraction effect. First, single-factor experiments were performed using the following factors: liquid–solid ratio, pH, enzyme dosage and ultrasonic temperature. The Box–Behnken design (BBD) and response surface methodology (RSM) were employed to optimize the extraction conditions and obtain the following optimal parameter values for the extraction of coumarins from P. decursivum: liquid–solid ratio 14:1 mL/g, pH 5.0, enzyme dosage 0.2%, ultrasonic temperature 60 °C and ultrasonic time 50 min. Under these conditions, the extraction yield of total coumarins from P. decursivum could reach 2.65%, which was close to the predicted extraction yield of 2.68%. Furthermore, the contents of six coumarins, namely, umbelliferone, nodakenin, xanthotoxin, bergapten, imperatorin and decursin were determined to be 0.707 mg·g−1, 0.085 mg·g−1, 1.651 mg·g−1, 2.806 mg·g−1, 0.570 mg·g−1 and 0.449 mg·g−1, respectively, using HPLC-MS after the optimization. In addition, the cell fragmentation of P. decursivum powder obtained using ultrasonic-assisted DES extraction with enzyme pretreatment was found to be the most comprehensive using scanning electron microscopy (SEM), which indicated the highest extraction efficiency for P. decursivum. Finally, the in vitro antioxidant activity of the extracts was evaluated via radical scavenging with 1,1-diphenyl-2-picrylhydrazyl (DPPH), which showed that ultrasonic-assisted DES extraction with enzyme pretreatment exhibited significant antioxidant activity with DPPH radical scavenging of up to 97.90%. This work developed a new and efficient extraction method for coumarins.