This paper describes a methodology for optimal seismic design of reinforced concrete 3D columns and bent caps (beams) of bridges. Design variables include compressive strength of concrete, geometry, as well as longitudinal and shear reinforcement of columns and beams. The optimization is performed to minimize the cost and CO2 emissions using the enhanced colliding bodies optimization (ECBO) algorithm. The trade-off between cost and CO2 emissions shows that in the design for minimizing CO2 emissions compared to the design based on the cost minimization, increasing 1.4 % in cost can decrease CO2 emissions by 6.1%.