Abstract-Low-Density Parity-Check (LDPC) codes are usually decoded by running an iterative belief-propagation (BP), or message-passing, algorithm over the factor graph of the code. The traditional message-passing scheduling, called flooding, consists of updating all the variable nodes in the graph, using the same pre-update information, followed by updating all the check nodes of the graph, again, using the same pre-update information. Recently, several studies show that sequential scheduling, in which messages are generated using the latest available information, significantly improves the convergence speed in terms of number of iterations. Sequential scheduling introduces the problem of finding the best sequence of message updates. We propose Informed Dynamic Scheduling (IDS) strategies that select the message-passing schedule according to the observed rate of change of the messages. In general, IDS strategies require computation to select the message to update but converge in fewer message updates because they focus on the part of the graph that has not converged. Moreover, IDS yields a lower errorrate performance than either flooding or sequential scheduling because IDS strategies overcome traditional trapping-set errors. This paper presents IDS strategies that address several issues including performance for short-blocklength codes, complexity, and implementability.