2020
DOI: 10.1016/j.procs.2020.03.257
|View full text |Cite
|
Sign up to set email alerts
|

Optimizing LSTM for time series prediction in Indian stock market

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
64
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 256 publications
(102 citation statements)
references
References 13 publications
0
64
0
2
Order By: Relevance
“…The performance of the LSTM is highly dependent on selecting the hyper-parameters for achieving good results ( Yadav et al, 2020 ). Long Short-Term Memory is used for handling the sequences in the input observations and is capable of learning mapping of input to output functions which are not supported by MLP and CNN.…”
Section: Deep Learning-based Time Series Forecastingmentioning
confidence: 99%
“…The performance of the LSTM is highly dependent on selecting the hyper-parameters for achieving good results ( Yadav et al, 2020 ). Long Short-Term Memory is used for handling the sequences in the input observations and is capable of learning mapping of input to output functions which are not supported by MLP and CNN.…”
Section: Deep Learning-based Time Series Forecastingmentioning
confidence: 99%
“…In [3] Budiharto propose an LSTMbased approach for stock price forecasting in Indonesia. Yadav et al [4] propose an optimized LSTM for Indian stock market forecasts. The Sri Lanka market was the subject of an RNN model proposal by Samarawickrama et al in [5].…”
Section: Related Workmentioning
confidence: 99%
“…Namun RNN mempunyai masalah vanishing dan exploding gradient yaitu apabila terjadi perubahan pada jangkauan nilai dari satu lapisan menuju lapisan berikutnya pada sebuah arsitektur. LSTM dibangun dan dirancang untuk mengatasi masalah gradien menghilang dari RNN ketika berhadapan dengan vanishing dan Title of manuscript is short and clear, implies research results (First Author) exploding gradient tersebut [10]. Arsitektur LSTM terdiri dari lapisan input, lapisan output, dan lapisan tersembunyi yang disajikan pada Gambar 2.…”
Section: Pembuatan Modelunclassified