Reducing particulate emission is a key factor in improving the air quality as particulate matter cause respiratory diseases. In this study, an axial cyclone was selected from several existing technologies to reduce particulate emissions owing to its outstanding separation performance and low-pressure drop. To enhance the axial cyclone, the fastest descending curve among the lines that pass through two points was selected; it induces faster momentum changes from the axial to the tangential direction. Therefore, the selected cycloid curve was applied to the vanes and body of the axial cyclone. The particle trajectory was simulated using a discrete phase model (DPM) in ANSYS Fluent ver. 2020 R2. Furthermore, the external structure of the axial cyclone was optimized via multi-objective optimization based on response surface methodology. Additionally, experiments were conducted to evaluate the proposed cyclone performance. Without applying the cycloid curve, the separation efficiency and the pressure drop were 73.6% and 1013.3 Pa, respectively. In the case of the cycloid-applied axial cyclone, however, the separation efficiency and pressure drop were 91.6% and 1109.6 Pa, respectively. Thus, the application of the cycloid curve improved the cyclone performance by approximately 24.5%.