It is an efficient protocol to use the refocusing flip angle pulse optimization technique to solve special engineering technical problems in nuclear magnetic resonance (NMR) measurements. By reducing RF pulse duration, the low refocusing flip angle pulses can consume lower power, satisfy specific absorption rate of samples, and improve signal-to-noise ratio as well. To further analyze the function mechanism of pulse angles, the dependence of signal intensity on RF pulse is studied in homogenous magnetic field and constant gradient magnetic field respectively. Afterwards, echo amplitudes with various tip angles and flip angles ranging from 0° to 180° are compared with conventional sequence of 90° pulse followed by 180° pulses theoretically and experimentally. For the constant gradient field, the refocusing pulse of flip angle can be as low as 140°, defined as the optimum herein, to obtain the strongest signal intensity, enhanced by 13% compared with that of 180°. Moreover, T1 distributions measured by the conventional and optimal sequences for distilled water at room temperature are compared, and good conformances of T1 between the two pulse sequences are obtained, which demonstrates the optimal refocusing pulse can be directly applied to T1 measurement. The results provide constructive suggestion for designing pulse sequences for signal intensity enhancement in NMR logging while drilling and NMR online quick analysis.