Blue phases (BPs) have a frustrated structure stabilized by chirality-dependent defects. They are classified into three categories: blue phase I (BPI), blue phase II (BPII), and blue phase III (BPIII). Among them, BPIII has recently attracted much attention due to its elusive amorphous structure and high-contrast electro-optical response. However, its structure has remained unelucidated, and the molecular design for stabilizing BPIII is still unclear. We present the following findings in this review. (1) BPIII is a spaghetti-like tangled arrangement of double-twist cylinders with characteristic dynamics. (2) Molecular biaxiality and flexibility contribute to stabilize BPIII. (3) BPIII exhibits submillisecond response, high contrast, and wide-viewing angle at room temperature without surface treatment or an optical compensation film. It was free from both hysteresis and residual transmittance. The electro-optical effects are explained in relation to the revealed structure of BPIII. Finally, we discuss the memory effect of a polymer network derived from the defects of BPIII.