Impaired oxygen delivery and tissue perfusion have been identified as significant factors that contribute to the loss of retinal ganglion cells in glaucoma patients. This study predicts retinal blood and tissue oxygenation using a theoretical model of the retinal vasculature based on confocal microscopy images of the mouse retina. These images reveal a complex and heterogeneous geometry of vessels that are distributed non-uniformly into multiple distinct retinal layers at varying depths. Predicting oxygen delivery and distribution in this irregular arrangement of retinal microvessels requires the use of an efficient theoretical model. The model employed in this work utilizes numerical methods based on a Green's function approach to simulate the spatial distribution of oxygen levels in a network of retinal blood vessels and the tissue surrounding them. Model simulations also predict the blood flow rates and pressures in each of the microvessels throughout the entire network. As expected, the model predicts that average vessel PO decreases as oxygen demand is increased. However, the standard deviation of PO in the vessels nearly doubles as oxygen demand is increased from 1 to 8Â cm O/100Â cm/min, indicating a very wide spread in the predicted PO levels, suggesting that average PO is not a sufficient indicator of oxygenation in a heterogeneous vascular network. Ultimately, the development of this mathematical model will help to elucidate the important factors associated with blood flow and metabolism that contribute to the vision loss characteristic of glaucoma.