binding proteins such as calmodulins and calmodulin-binding proteins [2]. Reports showed close interaction between intracellular H2O2 and cytosolic calcium in response to biotic and abiotic stresses -increase in cytosolic calcium boosts the generation of H2O2. The protein calmodulin binds to activates plant catalases in the present of calcium. It indicated a dual function of Ca in regulating H2O2 homeostasis [30].Metals are involved in the direct or indirect generation of free radicals (FR) and reactive oxygen species in the following ways: 1. direct transfer of electron in the single electron reduction; 2. disturbance of metabolic pathways resulting in an increase in the rate of FR and ROS formation; 3. inactivation and down regulation of the enzymes of the antioxidative defence system, and 4. depletion of low molecular weight of antioxidants [33]. Microelements such as Fe, Zn, Cu and Mn fulfil various roles in the metabolism of plant organism and are necessary for the regularity of physiological processes, however the excess and deficiency of these elements leads also to disturbance of ionic homeostasis [34]. Fe, Mn, Cu, and Zn as transition metals have frequently unpaired electrons and they are, therefore, very good catalysts of oxygen reduction. In aqueous solutions at neutral pH, O2 and [48] have concluded that an oxidative stress could be involved in Cd toxicity, by either inducing oxygen free radical production, or by decreasing enzymatic and nonenzymatic antioxidants.The subject of numerous studies for at least the past four decades has been physiological responses of plants for salinity and heavy metals in the controlled laboratory conditions. However, many of these determinations are concentrated to one type of pollutant, whilst plants in the natural conditions are subjected to many stressful differentiated ecophysiological sources and factors. Therefore there still remains a need for research on the interdependencies of plants with multiple biotic and abiotic factors in their natural habitats, their adaptation mechanisms and responses. The aim of this paper was thus to investigate the enzymatic antioxidant mechanisms and responses in plants subjected to destabilization of chemical elements management in the natural conditions. We thus studied antioxidant enzymes SOD, CAT, and APOX, and the content of malondialdehyde (MDA) variations in different ecological groups of glycophytes Creeping thistle Cirisium arvense, Common nettle Urtica dioica, Yarrow Achillea millefolium, and Burdock Arctium lappa in various types of environments: salted and alkaline anthropogenic environments, agricultural environments
Plant Science 38and also pollution free environments of the Pomeranian region of Poland. We also investigated the halophyte Common glasswort Salicornia europaea from only salted environments. Simultaneously, we examined the levels of chemical elements Na, Ca, Fe, Zn, Cu, Mn, Cd, and Pb in roots and green parts of plants as probably the factor generated reactive oxidant species and thus activated enzymat...