In recent years, many city governments around the world have begun to use information and communication technology to increase the management efficiency of on-street parking. Among various experimental smart parking projects, deployment of wireless magnetic sensors and smart parking meters are quite common. However, using wireless magnetic sensors can only detect the occupancy of parking spaces without the knowledge of who are currently using these parking spaces; human labor is still needed to issue the parking bills. In contrast, smart parking meters based on image recognition can detect the occupancy of parking spaces along with the license plate numbers, but the cost of deploying smart parking meters is relatively high. In this research, we investigate the feasibility of building an on-street parking management system mainly based on low-cost Bluetooth beacons. Specifically, beacon transmitters are installed in the vehicles, and beacon receivers are deployed along the roadside parking spaces. By processing the received beacon signals using Kalman filter, our system can detect the occupancy of parking spaces as well as the identification of the vehicles. Although distance estimation using the received signal strength is not accurate, our experiments show that it suffices for correct detection of parking occupancy.