2022
DOI: 10.1007/s10801-022-01140-3
|View full text |Cite
|
Sign up to set email alerts
|

Partitions of the complete hypergraph $$K_6^3$$ and a determinant-like function

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…Remark normalΛVdS3$\Lambda _{V_d}^{S^3}$ was introduced in [5] as another generalization of the exterior algebra. When d=2$d=2$, it was shown that there exists a linear map detS3:V220k$det^{S^3}:V_2^{\otimes 20}\rightarrow k$ with the property that detS3(1i<j<k6false(vi,j,kfalse))=0$det^{S^3}(\otimes _{1\leqslant i&lt;j&lt;k\leqslant 6}(v_{i,j,k}))=0$ if there exist 1<x<y<z<t6$1&lt;x&lt;y&lt;z&lt;t\leqslant 6$ such that vx,y,z=vx,y,t=vx,z,t=vy,z,t$v_{x,y,z}=v_{x,y,t}=v_{x,z,t}=v_{y,z,t}$.…”
Section: Applicationsmentioning
confidence: 99%
“…Remark normalΛVdS3$\Lambda _{V_d}^{S^3}$ was introduced in [5] as another generalization of the exterior algebra. When d=2$d=2$, it was shown that there exists a linear map detS3:V220k$det^{S^3}:V_2^{\otimes 20}\rightarrow k$ with the property that detS3(1i<j<k6false(vi,j,kfalse))=0$det^{S^3}(\otimes _{1\leqslant i&lt;j&lt;k\leqslant 6}(v_{i,j,k}))=0$ if there exist 1<x<y<z<t6$1&lt;x&lt;y&lt;z&lt;t\leqslant 6$ such that vx,y,z=vx,y,t=vx,z,t=vy,z,t$v_{x,y,z}=v_{x,y,t}=v_{x,z,t}=v_{y,z,t}$.…”
Section: Applicationsmentioning
confidence: 99%