2022
DOI: 10.30865/jurikom.v9i1.3834
|View full text |Cite
|
Sign up to set email alerts
|

Pemilihan Model Arsitektur Terbaik Dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation

Abstract: Backpropagation is one of the methods contained in a neural network that is able to train dynamic networks using mathematical knowledge based on architectural models that have been developed in detail and systematically. Backpropagation itself is able to accommodate a lot of information that serves as a useful experience. However, the Backpropagation Algorithm tends to be slow to achieve convergence in obtaining optimum accuracy and requires large training data and the optimization used is less efficient. The … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 3 publications
0
2
0
2
Order By: Relevance
“…Based on the four indices, the class is determined in the classification results as shown in Table 2. Architectural optimization is carried out on the architectural model to obtain the model with the most efficient time and the best accuracy (Astria et al, 2022).…”
Section: Results and Discussion Land Parameters For Urban Environment...mentioning
confidence: 99%
See 1 more Smart Citation
“…Based on the four indices, the class is determined in the classification results as shown in Table 2. Architectural optimization is carried out on the architectural model to obtain the model with the most efficient time and the best accuracy (Astria et al, 2022).…”
Section: Results and Discussion Land Parameters For Urban Environment...mentioning
confidence: 99%
“…Optimization of the artificial neural network architecture, one of which has been developed with a neural architecture optimization (NAO) design automation algorithm (Luo, Tian, Qin, Chen, & Liu, 2018). Determination of the best neural network architecture model also needs to be done by optimizing the learning rate and momentum rate on the neural network with the backpropagation learning system (Astria, Windarto, & Damanik, 2022;Kushardono, 2017).…”
Section: Introductionmentioning
confidence: 99%
“…Neural Network ditentukan oleh tiga factor yaitu arsitektur jaringan, algoritma pembelajaran, dan fungsi aktivasi pernyataan tersebut diungkapkan oleh Fauset pada tahun 1994 [18]. Sebagai sekelompok elemen pemrosesan dalam kelompok tertentu, jaringan melakukan perhitungannya sendiri dan meneruskan hasilnya ke kelompok berikutnya [19]. Data non-numerik harus diubah menjadi data numerik dikarenakan algoritma JST bekerja langsung dengan angka [20].…”
Section: Jaringan Saraf Tiruan (Jst)unclassified
“…Neural Network ditentukan oleh tiga factor yaitu arsitektur jaringan, algoritma pembelajaran, dan fungsi aktivasi pernyataan tersebut diungkapkan oleh Fauset pada tahun 1994 [15]. Sebagai sekelompok elemen pemrosesan dalam kelompok tertentu, jaringan melakukan perhitungannya sendiri dan meneruskan hasilnya ke kelompok berikutnya [16]. Data non-numerik harus diubah menjadi data numerik dikarenakan algoritma JST bekerja langsung dengan angka [17].…”
Section: Gambar 2 Alur Kerja Penelitianunclassified