During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the later body plan is defined. Several signaling pathways are known to control body axis formation. Here, we show, however, that tissue mechanics plays an important role during this process. We focus on the emergence of a primary axis in initially spherical aggregates of mouse embryonic stem cells, which mirrors events in the early mouse embryo. These aggregates break rotational symmetry to establish an axial organization with domains of different expression profiles, e.g. of the transcription factor T/Bra and the adhesion molecule E-cadherin. Combining quantitative microscopy and physical modeling, we identify largescale tissue flows with a recirculation component and demonstrate that they significantly contribute to symmetry breaking. We show that the recirculating flows are explained by a difference in tissue surface tension across domains, akin to Marangoni flows, which we further confirm by aggregate fusion experiments. Our work highlights that body axis formation is not only driven by biochemical processes, but that it can also be amplified by tissue flows. We expect this type of amplification to operate in many other organoid and in-vivo systems.