2002
DOI: 10.1002/1521-3951(200205)231:1<165::aid-pssb165>3.0.co;2-p
|View full text |Cite
|
Sign up to set email alerts
|

Phase Transition in Temperature ?Quadrupolar Phase-Disordered Phase? in a Two-Dimensional Non-Heisenberg Ferromagnet

Abstract: Subject classification: 75.30.Kz In the paper we investigate phase transitions in temperature from the quadrupolar phase to the disordered phase in 2D isotropic and anisotropic non-Heisenberg ferromagnets. It is shown that in a 2D isotropic non-Heisenberg ferromagnet the long-range magnetic order is absent, whereas the quadrupolar phase is implemented in the anisotropic one. The temperature of the phase transition is determined. This system is compared with a 3D non-Heisenberg ferromagnet.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2002
2002
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 14 publications
(8 citation statements)
references
References 3 publications
0
7
0
1
Order By: Relevance
“…However, as shown in Ref. [23], the QU 2 -phase can be realized in such systems. Hence, we will be interested only in the transition temperature from the QU 2 -phase to the paramagnetic state.…”
Section: Temperature Phase Transitionsmentioning
confidence: 87%
See 1 more Smart Citation
“…However, as shown in Ref. [23], the QU 2 -phase can be realized in such systems. Hence, we will be interested only in the transition temperature from the QU 2 -phase to the paramagnetic state.…”
Section: Temperature Phase Transitionsmentioning
confidence: 87%
“…Before investigating the case of arbitrary values of the exchange anisotropy parameter D, consider the more simple situations: the so-called isotropic exchange case with D ¼ 1, considered, for example, in [9,21,[23][24][25], and also so-called Ising case with D ¼ 0.…”
Section: Article In Pressmentioning
confidence: 99%
“…Что же касается квантовых флукту-аций, то они конечны, поскольку сходимость интеграла флуктуаций для всех однородных состояний обеспечива-ется учетом магнитодипольного взаимодействия [48][49][50][51] и влиянием внешнего магнитного поля. Поэтому тео-рема Мермина−Вагнера о реализации дальнего маг-нитного порядка в двумерных системах не применима для рассматриваемой модели.…”
Section: однородные состоянияunclassified
“…It is somewhat convenient to use the Hubbard operators [17][18][19][20]. Separating the mean field out of the exchange part of the Hamiltonian (11), the single-site Hamiltonian is obtained as…”
Section: Phase Transition From the Easy-plane Phase To The Angular Phasementioning
confidence: 99%
“…The denominator of the Green function determines the dispersion equation of coupled ME waves [10,[18][19][20] det kd ij þ x ij k ¼ 0 ; …”
Section: Phase Transition From the Easy-plane Phase To The Angular Phasementioning
confidence: 99%