The removal capacity of different wastewater treatment plant (WWTP) technologies adopted in rural areas for phthalate was investigated in the Eastern Cape, South Africa. Wastewater samples collected from three selected WWTPs which use activated sludge (AS), trickling filter (TF), and oxidation pond (OP) technology were extracted using the solid-phase extraction method followed by gas chromatography-mass spectrometry (GC-MS) analysis. The six selected phthalate esters (PAEs) dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) were detected in all the samples collected from the WWTPs. DBP was the most abundant compound in the influent, effluent, and sludge samples with a maximum detection of 2497 μgL, 24.2 μgL, and 1249 μg/g dW, respectively, followed by DEHP and BBP. There was a relatively high removal capacity achieved by AS in Alice, TF in Berlin, and OP in Bedford with a removal efficiency that varied between 77 and 99%, 76 and 98%, and 61 and 98%, respectively. A high significant correlation of PAE removal with total suspended solids (TSS) and turbidity suggests that the removal performance proceeded more through adsorption on settling particles and sludge than on biodegradation. However, the concentrations of PAEs detected in the final effluent and sludge samples exceeded acceptable levels allowed internationally for a safe aquatic environment. AS may have exhibited a more stable and better performance across the different seasons; however, pollution source control still deserves a special attention to prevent the risk posed by these micropollutants.