Objective: The daily maximum temperature and seawater level continuously increase as global warming continues. We examined the adaptability and production performance of heat-stressed goats with a supply of low-saline drinking water.Methods: Twelve Kacang and Kacang Etawah cross goats were exposed to two climatic conditions (control, 25°C to 33°C, 83% relative humidity [RH], temperature humidity index [THI]: 76 to 86; and hot environment, 26°C to 39°C, 81% RH, THI: 77 to 94) and two salt levels in drinking water (0% and 0.4% NaCl). The experimental design was a Latin Square (4×4) with four treatments and four periods (28 days each).Results: Temperature of the rectal, skin, and udder, and respiration rate rose, reached a maximum level on the first day of heat exposures, and then recovered. Plasma sodium rose at 0.4% NaCl level, while the hot environment and salinity treatments increased the drinking water to dry matter (DM) intake ratio. Water excretion was elevated in the hot environment but lowered by the increase in salinity. Total lying time increased, whereas change position frequency decreased in the hot condition. Lying and ruminating and total ruminating time increased and explained the enhanced DM digestibility in the hot conditions.Conclusion: The goats exhibited a high level of plasma sodium as salinity increased, and they demonstrated physiological and behavioral alterations while maintaining their production performances under increasing daily maximum temperatures.