Background
The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. The work presented herein provides, to our knowledge, the first association mapping study in an interspecific OxG hybrid population of oil palm which presents tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production.
Results
Using genotyping-by-sequencing (GBS), we identified a total of 3,776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrids for 10 agronomic traits. Twelve genomic regions were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes.
Conclusions
We provide new insights on candidate genes that mapped on genomic regions involved in plant architecture and yield; however, these potential candidate genes need to be confirmed for future targeted functional analysis. The associated markers may be valuable resources for the development of marker-assisted selection in oil palm breeding.
Keywords: Association mapping, Elaeis guineensis, Elaeis oleifera, genotyping-by-sequencing, plant architecture, yield.