Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Plant‐parasitic nematodes pose a significant threat to finger millet crops, potentially causing yield reduction of up to 70%. Extracts derived from finger millet varieties contain potent bioactive compounds that can mitigate nematode damage and promote plant growth. This study aimed at isolating and characterizing bioactive compounds from the finger millet varieties Ikhulule, Okhale‐1, and U‐15; evaluating the impact of Ikhulule and U‐15 extracts on the mortality of the root lesion nematode Pratylenchus vandenbergae; assessing the growth promotion effects of Ikhulule and U‐15 extracts on the finger millet variety Okhale‐1; and determining the efficacy of these extracts in managing plant‐parasitic nematodes under greenhouse conditions. Extracts were obtained from both leaves and roots and tested in vitro for nematode mortality and in vivo for growth promotion and nematode control. The results showed that finger millet extracts exhibited strong nematicidal properties in vitro, achieving a mortality rate of up to 98% against P. vandenbergae nematodes. Applying these extracts to finger millet shoots significantly reduced nematode populations in both soil and roots and decreased the reproductive factor to below one (1), indicating an effective nematode control. The study attributes the enhanced nematicidal effects of finger millet extracts to their bioactive compounds, particularly dodecanoic acid, phytol, 1,1,4a‐trimethyl‐6‐decahydro naphthalene, 2,3‐dihydro‐benzofuran, 2‐methoxy‐4‐vinylphenol and ethyl ester, and hexadecanoic acid. These findings suggest that finger millet‐derived extracts offer a natural solution for nematode management and broader agronomic benefits, ultimately contributing to overall plant health and productivity.
Plant‐parasitic nematodes pose a significant threat to finger millet crops, potentially causing yield reduction of up to 70%. Extracts derived from finger millet varieties contain potent bioactive compounds that can mitigate nematode damage and promote plant growth. This study aimed at isolating and characterizing bioactive compounds from the finger millet varieties Ikhulule, Okhale‐1, and U‐15; evaluating the impact of Ikhulule and U‐15 extracts on the mortality of the root lesion nematode Pratylenchus vandenbergae; assessing the growth promotion effects of Ikhulule and U‐15 extracts on the finger millet variety Okhale‐1; and determining the efficacy of these extracts in managing plant‐parasitic nematodes under greenhouse conditions. Extracts were obtained from both leaves and roots and tested in vitro for nematode mortality and in vivo for growth promotion and nematode control. The results showed that finger millet extracts exhibited strong nematicidal properties in vitro, achieving a mortality rate of up to 98% against P. vandenbergae nematodes. Applying these extracts to finger millet shoots significantly reduced nematode populations in both soil and roots and decreased the reproductive factor to below one (1), indicating an effective nematode control. The study attributes the enhanced nematicidal effects of finger millet extracts to their bioactive compounds, particularly dodecanoic acid, phytol, 1,1,4a‐trimethyl‐6‐decahydro naphthalene, 2,3‐dihydro‐benzofuran, 2‐methoxy‐4‐vinylphenol and ethyl ester, and hexadecanoic acid. These findings suggest that finger millet‐derived extracts offer a natural solution for nematode management and broader agronomic benefits, ultimately contributing to overall plant health and productivity.
Pleurotus ostreatus, an edible mushroom widely consumed worldwide, generates a by-product known as spent mushroom substrate (SMS). This material has demonstrated biological activity against agricultural crop pathogens. In this study, we evaluated the nematocidal effectiveness of hydroalcoholic extracts (T5, T2, AT5, and AT2) derived from SMS of P. ostreatus against (J2) of the phytonematode Nacobbus aberrans and assessed their potential toxicity towards the non-target nematode Panagrellus redivivus. Among these extracts, AT5 exhibited the highest efficacy against N. aberrans and was the least toxic against P. redivivus. Liquid–liquid partitioning yielded the AQU fraction, which showed significant nematocidal activity against J2 (75.69% ± 8.99 mortality), comparable to chitosan. The GC-MS analysis revealed the presence of several compounds, including palmitic acid, linoleic acid, and 2,4-Di-tert-butylphenol. These findings are consistent with studies confirming the antagonistic effectiveness of these compounds against phytonematodes. Additionally, all extracts exhibited toxicity against P. redivivus, with T2 being the most toxic. Our findings demonstrate that while the AT5 extract displays antagonistic effectiveness against both N. aberrans and P. redivivus, it was the least toxic among the extracts tested. Thus, SMS of P. ostreatus holds potential as a source of nematocidal compounds, which could offer significant benefits for agricultural pest control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.