Abstract-Technological advances have enabled various approaches for developing artificial organs such as bionic eyes, artificial ears, and lungs etc. Recently electronics (e-skin) or tactile skin has attracted increasing attention for its potential to detect subtle pressure changes, which may open up applications including real-time health monitoring, minimally invasive surgery, and prosthetics. The development of e-skin is challenging as, unlike other artificial organs, tactile skin has large number of different types of sensors, which are distributed over large areas and generate large amount of data. On top of this, the attributes such as softness, stretchability, and bendability etc., are difficult to be achieved as today's electronics technology is meant for electronics on planar and stiff substrates such as silicon wafers. This said, many advances, pursued through "More than Moore" technology, have recently raised hope as some of these relate to flexible electronics and have been targeted towards developing e-skin. Depending on the technology and application, the scale of eskin could vary from small patch (e.g. for health monitoring) to large area skin (e.g. for robotics). This invited paper presents some of the advances in large area e-skin and flexible electronics, particularly related to robotics.