Substrates based on the metal-polymer nanocomposites 2,3-dichloro-p-xylylene-silver (PCPX-Ag) that realize the effect of surface-enhanced Raman scattering (SERS) were developed. To obtain nanocomposites, the vapor-phase polymerization method was used (VDP), which makes it possible to control the nanocomposite microstructure. In the process of self-assembly during VDP, nanocomposite films with inclusions of silver particles were formed on the polycore substrates. Silver content varied from 2.5 to 16% vol. The possibility of using such substrates for the detection of low-molecular substances, for example 5,5′-dithiobis- (2-nitrobenzoic acid) (DTNB) analyte, by the SERS method with an enhancement factor of up to 104, was demonstrated. The dependence of the SERS spectra enhancement on the microstructure of the nanocomposite and the silver content was determined. The optical and morphological properties of nanocomposites were also investigated and their dependence on the silver content was shown. It has been demonstrated that the nanocomposite is SERS selective since when working with complex solutions in the presence of high molecular weight substances, signal enhancement was only observed for low molecular weight substances.