2018
DOI: 10.1007/s10064-017-1213-2
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of geotechnical properties of treated fibrous peat by artificial neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 27 publications
(10 citation statements)
references
References 19 publications
0
9
0
1
Order By: Relevance
“…Dehghanbanadaki has approached the artificial intelligence to predict UCSs in soils reinforced by cement or even fibrous materials. Also, the implementation of training methods into the artificial ANN’s process was compiled by algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA), which enable the improvement of the ANN model (Dehghanbanadaki et al , 2019a; Sun and Xu, 2016; Dehghanbanadaki et al , 2019b).…”
Section: Resultsmentioning
confidence: 99%
“…Dehghanbanadaki has approached the artificial intelligence to predict UCSs in soils reinforced by cement or even fibrous materials. Also, the implementation of training methods into the artificial ANN’s process was compiled by algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA), which enable the improvement of the ANN model (Dehghanbanadaki et al , 2019a; Sun and Xu, 2016; Dehghanbanadaki et al , 2019b).…”
Section: Resultsmentioning
confidence: 99%
“…For this study, the former will utilise 75% of the data, with the remaining 25% left for testing. This ratio is typical for neural network studies as training percentages can range from 70% to around 85% depending on the quantity of data (Dehghanbanadaki et al, 2019;Zaleski and Prozument, 2018).…”
Section: Generation Of Datasetmentioning
confidence: 99%
“…De otra parte, se halló un estudio que compara el Perceptrón Multicapa y red neuronal con enjambre de partículas [22], para medir las propiedades geotécnicas de la turba mezclada con diferentes proporciones de cemento. Los resultados indican que la resistencia a la compresión no confinada y el CBR de las muestras tratadas con cemento de 300 kg/m 3 aumentaron solamente en un factor de 8,54 y 13,66, en comparación con la turba sin tratar.…”
Section: Parámetros De Compactación Y Cbr Del Suelounclassified