Functionalized nitronyl nitroxide biradical ligands incorporating pyridine groups hold Co and Ln ions together, creating biradical-based 3d-4f tetranuclear complexes [LnCo(hfac)(NITPhPybis)] [Ln = Gd (1), Tb (2), Dy (3), and Ho (4); NITPhPybis = 5-(4-pyridyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1 H-imidazol-2-yl)benzene; hfac = hexafluoroacetylacetonate]. These complexes have a centrosymmetric cyclic molecular structure in which two biradicals perform as tetradentate ligands to bind two Co and two Ln ions, resulting in a rare octaspin system. Direct-current (dc) magnetic susceptibility studies reveal that the strong antiferromagnetic Co-NO magnetic exchange dominates the present magnetic system, while magnetic coupling of Gd-ON is ferromagnetic. Analysis of the magnetic data of the Gd complex allows us to determine the magnetic parameters through the appropriate magnetic model. Alternating-current (ac) magnetic susceptibility investigations indicate that 2 displays frequency-dependent out-of-phase signals under a zero dc field, while ac magnetic susceptibilities of 3 show field-induced frequency dependence, which is a typical feature of slow relaxation of the magnetization. Complexes 1-4 represent the first nitronyl nitroxide biradical-based 3d-4f compounds.