Progressive collapse of structures caused by extreme or accidental loads may lead to significant loss of life and property. Considerable research efforts have been made to date to mitigate the probability of progressive collapse and its consequences. This study summarises the fundamentals of progressive collapse in relation to the existing theoretical concepts and understanding. Specifically the existing theories pertinent to progressive collapse of building structures, in particular reinforced concrete (RC) flat plates, are examined from the following four key aspects: (1) definition of progressive collapse from deformation and/or strength perspectives with respect to the failure criteria of structural members and the entire structural system; (2) failure mechanisms of load-bearing systems undergoing progressive collapse with respect to the structural ultimate capacity, which has not been considered in the design process; (3) research methodologies for investigating collapse mechanisms, with emphases on experimental and numerical approaches; and (4) collapse-resistant design principles as covered in several international design standards in which a number of robustness requirements have been recognised. Based on the schematic review of the current trends and developments, gaps and limitations in progressive collapse research are identified and a new research direction is established to advance the progressive collapse study of RC flat plate structures.