This paper d i s c u s s e s how n components, which may be programs o r c i r c u i t s , i n a computer system can be c o n t r o l l e d so t h a t (1) a t most one component may perform a designated "critical" o p e r a t i o n a t any i n s t a n t and (2) i f one component wants t o perform i t s c r i t i c a l operat i o n , i t i s e v e n t u a l l y allowed t o do so. This c o n t r o l problem i s known as t h e mutual e x c l u s i o n o r i n t e r l o c k problem. A summary of t h e flow t a b l e model* f o r computer systems i s given, I n t h i s model, a c o n t r o l a l g o r i t h m i s r e p r e s e n t e d by a flow table. The number of i n t e r n a l states i n t h e c o n t r o l flow t a b l e i s used as a measure of t h e complexity of c o n t r o l algorithms.A lower bound of n + 1 i n t e r n a l states i t o be n e c e s s a r y if the mutual e x c l u s i o n problem is t o be solved. S t a n f o r d University, Stanford, C a l i f o r n i a ( A p r i l 1970) e i problem which r e q u i r e t h e minimum number of i n t e r n a l s t a t e s a r e d e s c r i b e d and i t i s proved t h a t t h e s e procedures give c o r r e c t c o n t r o l s o l u t i o n s . Other so-called "unbiased" algorithms a r e described which r e q u i r e 2 . n ! i n t e r n a l s t a t e s but break t i e s i n t h e case of mulsiple r e q u e s t s i n f a v o r of t h e component t h a t l e a s t r e c e n t l y executed i t s c r i t i c a l o p e r a t i o n . The paper concludes with a discuss i o n of t h e t r a d e o f f s between c e n t r a l and d i s t r i b u t e d c o n t r o l algorithms.
Procedures t o g e n e r a t e c o n t r o l flow tables f o r t h e mutual