Neste trabalho, uma formulação nodal é proposta para o tratamento de uma classe de problemas de transporte de nêutrons, em geometria cartesiana bidimensional. Pelo processo de integração, equações unidimensionais são obtidas, reescrevendo o modelo em termos de quantidades médias. A resolução das equações integradas é feita usando uma versão do método de Ordenadas Discretas Analítico (ADO), onde também são obtidas soluções explicitas, analíticas em termos das variáveis espaciais, através de um código de fácil implementação. Pode-se destacar também como vantagens desta formulação a versatilidade na escolha da quadratura e o baixo custo computacional, uma vez que esquemas iterativos não são necessários, tampouco a subdivisão do domínio em células. Para lidar como os termos do contorno que surgem no processo, utiliza-se aqui uma representação por constantes, de forma que as equações nas variáveis x e y são tratadas por um sistema acoplado. Resultados obtidos por esta formulação são apresentados, bem como alguns perfis de fluxo escalar.Palavras-chave: Ordenadas discretas, métodos nodais, problema de transporte de nêutrons bidimensional.In this paper, a nodal formulation is proposed for the treatment of a class of neutron transport problems in two-dimensional Cartesian geometry. By the integration process, one-dimensional equations are obtained, rewriting the model in terms of average quantities. The resolution of the integrated equations is made using a version of the Analytical Discrete Ordinate method (ADO), where also be obtained explicit solutions, analytical in terms of spatial variables, through an easy implementation code. It can also highlight as advantages of this formulation the versatility of the quadrature choice and the low computational cost, since iterative schemes are not needed either subdividing the domain in cells. To deal with the contour terms that arise in the process, is used here a representation by constants, so that the equations in the variables x and y are treated by a coupled system. Results obtained by this formulation are presented, as well as some profiles of scalar flux.A Equação de Transporte, por sua grande aplicabilidade em diversos problemas realísticos, principalmente em geometrias multidimensionais, tem motivado a comunidade científica a investir cada vez mais no desenvolvimento de novas formulações para seu tratamento [1][2][3][4].Mesmo com a existência de uma série de códigos bem estabelecidos e formulações dedicadas à sua resolução [5,6], a maioria é baseada em esquemas numéricos, o que encoraja o estudo e o desenvolvimento de novas técnicas, de caráter analítico, que possibilitem um ganho de precisão ou de eficiência computacional [7,8].Para resolução de problemas multidimensionais envolvendo transporte de partículas, as formulações que mais tem se destacado são as baseadas nos Métodos Nodais [9-11], principalmente pelo seu desempenho quando associados à malhas grossas. Estas formulações, que geralmente requerem a subdivisão do domínio em células, fazem uso de esquemas iterat...