Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.iii
ForewordThis report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associated markets and institutions. This study was originated, sponsored, and managed jointly by the DOE Office of Energy Efficiency and Renewable Energy and the DOE Office of Electricity Delivery and Energy Reliability.Grid modernization and technological advances are enabling resources, such as demand response and energy storage, to support a wider array of electric power system operations. Historically, thermal generators and hydropower in combination with transmission and distribution assets have been adequate to serve customer loads reliably and with sufficient power quality, even as variable renewable generation, such as wind and solar power, have become a larger part of the national energy supply. While demand response and energy storage can serve as alternatives or complements to traditional power system assets in some applications, their values are not entirely clear. This study seeks to address the extent to which demand response and energy storage can provide cost-effective benefits to the grid and to highlight institutions and market rules that facilitate their use.The project was initiated and informed by the results of two DOE workshops: one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policymakers, and the study design and goals reflect their contributions to the collective thinking of the project team. Additional information and the full series of reports can be found at www.eere.energy.gov/analysis.This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. This analysis used a commercial grid simulation tool to evaluate several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. A series of VG energy penetration scenarios from 16% to 55% were generated for a utility system in the western United States. This operational value of storage (measured by its ability to reduce system production costs) was estimated in each VG scenario, considering provision of different services and with several sensitivities to fuel price and generation mix. Overall, the results found that the presence of VG increases the value of energy storage by lowering off-peak energy prices more than on-peak prices, leading to a greater opportunity to arbitrage this price difference. However, significant charging from renewables, and consequently a net reduction in carbon emissions, did not occur until VG penetration was in the range of...