Pulmonary vein Doppler spectrum is highly load-dependent and thus has been used to estimate left ventricular (LV) filling pressure. However, the impact of LV function on pulmonary vein Doppler spectrum remains obscure because only load-sensitive indices were studied previously. In the present study, measurements of the pulmonary vein Doppler spectrum were correlated with load-insensitive LV systolic (end-systolic elastance [Ees]) and diastolic (relaxation time constant [tau] and beta coefficient of the end-diastolic pressure volume relationship) function indices obtained from an invasive catheterization study nonsimultaneously. The peak velocity, velocity time integral, and duration of systolic forward spectrum were significantly correlated with Ees (r = 0.35, r = 0.36, and r = 0.41, respectively;P < 0.05). The pulmonary vein diastolic velocity time integral (PVDVTI) and duration of the diastolic forward spectrum were significantly correlated with Ees (r = 0.51 and r = 0.57, respectively;P < 0.01). PVDVTI was correlated with tau and the end-diastolic pressure-volume relationship (EDPVR) (r = 0.42 and r = 0.40 respectively,P < 0.05). On the other hand, the systolic fraction of the forward spectrum was significantly correlated with ejection fraction (for peak velocity,r = 0.63, P < 0.01; for velocity time integral,r = 0.37, P < 0.05) but not with Ees, and the diastolic fraction of the forward spectrum was significantly correlated with minimum pressure derivative over time (for peak velocity,r = 0.48, P < 0.05; for velocity time integral,r = 0.44, P < 0.05, respectively) but not with tau or EDPVR. In summary, the systolic and diastolic components of the pulmonary vein Doppler spectrum are affected variably by LV systolic and diastolic function, independent of the loading condition. The systolic and diastolic fraction of pulmonary vein Doppler spectrum appears to depend more on the loading condition than the LV systolic or diastolic function.