In this work, hydrogen isotopes in the form of protium and deuterium were rapidly desorbed from magnetic-hydride iron oxide-palladium (Fe2O3-Pd) hybrid nanomaterials using an alternating magnetic field (AMF). Palladium, a hydride material with a well-known hydrogen isotope effect, was deposited on Fe2O3 magnetic nanoparticle support by solution chemistries and used as a hydrogen isotope storage component. The morphological, structural, optical, and magnetic studies reveal that the Fe2O3-Pd nanoparticles (NPs) are hybrid structures exhibiting both hydrogen isotope storage (Pd) and magnetic (Fe2O3) properties. The hydrogen isotope sorption/desorption behavior of metal hydride-magnetic nanomaterials was assessed by isothermal pressure-composition response curves (isotherms). The amount and rate of hydrogen isotope gas release was tuned by simply adjusting the strength of the magnetic field strength applied. Protium and deuterium displayed a similar loading capacity, namely H/M 0.55 and H/M=0.45, but different plateau pressures. Significant differences in the kinetics of release for protium and deuterium during magnetic heating were observed. A series of magnetically induced charge-discharge cycling experiments were conducted showing that this is a highly reproducible and robust process.