2021
DOI: 10.1140/epjd/s10053-021-00224-2
|View full text |Cite
|
Sign up to set email alerts
|

Quantum battles in attoscience: tunnelling

Abstract: What is the nature of tunnelling? This yet unanswered question is as pertinent today as it was at the dawn of quantum mechanics. This article presents a cross section of current perspectives on the interpretation, computational modelling, and numerical investigation of tunnelling processes in attosecond physics as debated in the Quantum Battles in Attoscience virtual workshop 2020. Graphic abstract

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

5
15
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 30 publications
(21 citation statements)
references
References 119 publications
5
15
0
1
Order By: Relevance
“…Другим важным аспектом рассматриваемой проблемы, мало изученным особенно экспериментально, является время квантового туннелирования [13,[16][17][18][19]. Это связано не только с тем, что время в формализме квантовой механики не является динамической переменной, но и с существованием парадокса МакКолла-Хартмана [20,21].…”
Section: групповое время задержки квантового туннелированияunclassified
“…Другим важным аспектом рассматриваемой проблемы, мало изученным особенно экспериментально, является время квантового туннелирования [13,[16][17][18][19]. Это связано не только с тем, что время в формализме квантовой механики не является динамической переменной, но и с существованием парадокса МакКолла-Хартмана [20,21].…”
Section: групповое время задержки квантового туннелированияunclassified
“…The most essential features of these processes can often be understood with the help of the well-known simple man model (SMM) 6,[10][11][12][13] , which represents electron's motion after the ionization event occurs as entirely classical. This fact underlies a variety of highly efficient semi-classical approaches [12][13][14][15][16][17][18][19] , in which the electron ionization event is treated quantum-mechanically, with electron's ionization occurring near the local peaks of the electric field, and the subsequent electron motion treated classically or semi-classically. These approaches include the well-known TIPIS model 12,16,20 , the quantum trajectory Monte Carlo model (QTMC) 19 , semi-classical two-step model 21 or Coulomb quantum orbit strong-field approximation (CQSFA) 22,23 .…”
Section: Joint Probability Calculation Of the Lateral Velocity Distri...mentioning
confidence: 99%
“…We do not specify the constant A in this expression as we will be interested below in the distribution shape which is described by the exponential function. Expression (15) gives us the final velocity distribution at the detector when the laser pulse is gone, but it can also be used as a plausible expression for the lateral velocity distribution within interval of the pulse duration, as is done e.g., in the semi-classical simulations 12,16,20,21 . The rational behind that is that a linearly polarized electric field does not affect the distribution in the lateral direction during the electron's motion subsequent to the ionization event.…”
Section: Calculation Of the Joint Probabilitymentioning
confidence: 99%
See 1 more Smart Citation
“…The production of ultrashort intense extreme ultraviolet (XUV) laser pulses [1,2] from high harmonic generation (HHG) [3][4][5] along with the development of spectroscopic techniques, such as the linear attosecond streak camera (LSC) [2,6], the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) [1], and the attoclock technique [7], enables the temporal resolution in the few attosecond (1 as = 10 −18 s) domain and, thus, on the natural time scale of electron dynamics. Recent timeresolved observations of the atomic photoionization [8][9][10], tunneling ionization [11][12][13][14][15][16][17][18][19][20][21], correlation-mediated photoionization time delay [22,23], valence shell electron dynamics [24,25], and the laser-driven electron dynamics in a molecule [26][27][28][29] are striking examples for the capabilities of these techniques, leading to the rapid development of the attosecond metrology and chronoscopy [30].…”
mentioning
confidence: 99%