2D materials have demonstrated good chemical, optical, electrical, and magnetic characteristics, and offer great potential in numerous applications. Corresponding synthesis technologies of 2D materials that are highquality, high-yield, low-cost, and time-saving are highly desired. Salt-assisted methods are emerging technologies that can meet these requirements for the fabrication of 2D materials. Herein, the recent process for the salt-assisted synthesis of 2D materials and their typical applications are summarized. First, the properties of salt crystals and molten salts are briefly introduced, and then some examples of 2D materials synthesis with the assistance of salt as well as their representative applications are presented. The underlying mechanisms of salts with different states on the formation of 2D morphology are discussed to aid in the rational design of synthetic route of 2D materials. At last, the challenges and future perspectives for salt-assisted methods are briefly described. This review provides guidance for the controllable synthesis of 2D materials based on the salt-assisted approaches.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.201908486.MoO 3 , and LaNb 2 O 7 ), [14][15][16] layered double hydroxides (LDHs, e.g., Mg 6 Al 2 (OH) 16 CO 3 •4H 2 O), [17] hexagonal-boron nitride (h-BN), [2,18] transition metal halides (such as MoCl 2 and CrCl 3 ), [19] black phosphorus, [20] graphitic carbon nitride (g-C 3 N 4 ), [5] MXene (such as Ti 2 C and Ti 3 CN), [21][22][23][24][25] and clays (for instance, [(Mg 3 )(Si 2 O 5 ) 2 (OH) 2 ] and [(Al 2 )(Si 3 Al) O 10 (OH) 2 ]K). [19] Notably, many nonlayered structure species can also form 2D morphology with specific synthetic methods, largely expanding the 2D family (such as hexagonal-MoO 3 (h-MoO 3 ), hexagonal-WO 3 (h-WO 3 ), [15] transition metal nitrides (TMNs), [26,27] and transition metal phosphides (TMPs)). [28] To exploit the applications of 2D materials, the development of a synthetic method should be prioritized. Currently, synthesis processes of 2D materials could be divided into two categories, naming the top-down and bottom-up approaches. [29][30][31] Generally, exfoliation is the most common top-down method to produce monolayer or few-layer 2D materials. [19,32] Graphene was first prepared by mechanical exfoliation of highly oriented pyrolytic graphite with sellotape in 2004. [33] The exfoliation can weaken the interlayer Van der Waals force for bulk materials with layered crystal structures while maintain the covalent bonding in plane to produce monolayer or few-layer nanosheets. Although the productivity based on this method is limited due to the low efficiency, the exfoliation approach provides a new synthesis methodology for 2D materials. A series of studies on liquid exfoliation have been conducted by Coleman and co-workers. [19,34,35] By sonicating the bulk material in an appropriate solvent with similar interface energy, 2D material ink can be prepared. After the liq...