The Ni-Co/SiC composite coatings were prepared via jet electrodeposition in the presence of magnetic field. The microstructure and texture orientation of the composite coatings were analyzed via field emission scanning electron microscopy, three-dimensional profiling, and X-ray diffraction. The microhardness and wear resistance were characterized by a microhardness tester and a friction–abrasion testing machine. The results indicated that nano-SiC particles improved the surface morphology of the Ni-Co/SiC composite coating. In jet electrodeposition, globular structure aggregation began to form protrusions in the Ni-Co/SiC composite coating due to nanoparticle agglomeration when 6 g/L of nano-SiC was added. The Ni-Co/SiC (6 g/L) composite coating became uniform and densification by jet electrodeposition in magnetic field, with higher microhardness and better wear resistance. The microhardness of the Ni-Co/SiC composite coating increased to 626 ± 14 HV, and the corresponding friction coefficient was as low as 0.317.