2022
DOI: 10.48550/arxiv.2202.09834
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Real-time Model Predictive Control and System Identification Using Differentiable Physics Simulation

Abstract: Developing robot controllers in a simulated environment is advantageous but transferring the controllers to the target environment presents challenges, often referred to as the "sim-to-real gap". We present a method for continuous improvement of modeling and control after deploying the robot to a dynamically-changing target environment. We develop a differentiable physics simulation framework that performs online system identification and optimal control simultaneously, using the incoming observations from the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?