The need for long-term monitoring of individuals in their natural environment has initiated the development of a various number of wearable healthcare sensors for a wide range of applications: medical monitoring in clinical or home environments, physical activity assessment of athletes and recreators, baby monitoring in maternity hospitals and homes etc. Neural networks (NN) are data-driven type of modelling. Neural networks learn from experience, without knowledge about the model of phenomenon, but knowing the desired "output" data for the training "input" data. The most promising concept of machine learning that involves NN is the deep learning (DL) approach. The focus of this review is on approaches of DL for physiological activity recognition or human movement analysis purposes, using wearable technologies. This review shows that deep learning techniques are useful tools for health condition prediction or overall monitoring of data, streamed by wearable systems. Despite the considerable progress and wide field of applications, there are still some limitations and room for improvement of DL approaches for wearable healthcare systems, which may lead to more robust and reliable technology for personalized healthcare.
Keywords: deep learning, human activity monitoring, human machine interface, wearable sensors, smart sensors, multimodal interface Medicinski podmladak / Medical Youth Janković M. et al. Deep learning approaches for human activity recognition using wearable technology. MedPodml 2018, 69(3):14-24 15Potreba za dugotrajnim praćenjem osoba u njihovom svakodnevnom okruženju inicirala je razvoj velikog broja nosivih senzora (integrisanih u delove garderobe) s različitom primenom, kao što su medicinsko praćenje u kliničkim i kućnim uslovima, procena fizičke aktivnosti sportista i rekreativaca, praćenje beba u porodilištima i kućama i sl. Neuralne mreže (NM) predstavljaju tip modelovanja zasnovan na velikom broju podataka. Ove mreže uče na osnovu iskustva, bez poznavanja modela fenomena, ali znajući šta su željeni "izlazni" podaci za obučavajuće "ulazne" podatke. Koncept mašinskog učenja koji najviše obećava i uključuje NM jeste duboko učenje (DU). Fokus ovog preglednog rada je u pristupima DU u cilju prepoznavanja fizioloških aktivnosti i analize ljudskih pokreta primenom "odevne tehnologije". Ovaj rad pokazuje da su tehnike dubokog učenja korisne alatke za predikciju zdravstvenih stanja ili celokupno praćenje podataka koji se šalju sa "odevnih" senzora. Uprkos značajnom napretku i obećavajućoj oblasti primene, i dalje postoje ograničenja i prostor za unapređenje pristupa DU za "odevne" zdravstvene sisteme koji će dovesti do njihove pouzdane primene i omogućiti personalizovanu zdravstvenu zaštitu.Ključne reči: duboko učenje, praćenje ljudske aktivnosti, čovek-mašina interfejs, odevni senzori, pametni senzori, multimodalni interfejs