This review focuses upon the use of nitroso Diels–Alder reactions as a structural complexity generating reaction that has been so far a quite scarcely treated topic, despite its potential. In particular, the use of N-acyl-1,2-dihydropyridines as a non-symmetrical diene component in nitroso Diels–Alder reactions encompasses an initial diversification of pathways giving rise to different cycloadducts (direct and inverse). Selective elaborations of these cycloadducts, basically using a reagent-based approach, deliver a discrete number of structurally diverse compounds, including some original heterobicyclic scaffolds and functionalized heterocycles. This forward synthetic planning allowed the individuation of a new biologically active compound based on a novel oxadiaza-bicyclic-[3.3.1]-nonene scaffold which is still under preclinical evaluation.