The two-step oxidation of proline in all eukaryotes is performed at the inner mitochondrial membrane by the consecutive action of proline dehydrogenase (ProDH) that produces ⌬ 1 -pyrroline-5-carboxylate (P5C) and P5C dehydrogenase (P5CDH) that oxidizes P5C to glutamate. This catabolic route is down-regulated in plants during osmotic stress, allowing free Pro accumulation. We show here that overexpression of MsProDH in tobacco and Arabidopsis or impairment of P5C oxidation in the Arabidopsis p5cdh mutant did not change the cellular Pro to P5C ratio under ambient and osmotic stress conditions, indicating that P5C excess was reduced to Pro in a mitochondrial-cytosolic cycle. This cycle, involving ProDH and P5C reductase, exists in animal cells and now demonstrated in plants. As a part of the cycle, Pro oxidation by the ProDH-FAD complex delivers electrons to the electron transport chain. Hyperactivity of the cycle, e.g. when an excess of exogenous L-Pro is provided, generates mitochondrial reactive oxygen species (ROS) by delivering electrons to O 2 , as demonstrated by the mitochondria-specific MitoSox staining of superoxide ions. Lack of P5CDH activity led to higher ROS production under dark and light conditions in the presence of Pro excess, as well as rendered plants hypersensitive to heat stress. Balancing mitochondrial ROS production during increased Pro oxidation is therefore critical for avoiding Pro-related toxic effects. Hence, normal oxidation of P5C to Glu by P5CDH is key to prevent P5C-Pro intensive cycling and avoid ROS production from electron run-off.Stress-related changes in Pro biosynthesis and degradation are conserved in different organisms and used to induce essential signaling pathways, such as p53-mediated apoptosis in mammalian cells (1) or osmo-protecting mechanisms in plants (2) and bacteria (3). Pro is one of the most common osmolytes that, together with glycine-betaine and soluble sugars, accumulates in plants in response to a wide array of abiotic and biotic stresses (2,4,5). Although the role of Pro as an osmo-protecting molecule in prokaryotes is well established (3, 6), the overall function of stress-accumulated free Pro in plants is still under debate (2, 7-9). In most plants, stress-induced free Pro accumulation results from enhanced Pro synthesis and concomitant silencing of Pro degradation (10 -13). Pro is produced in the cytosol and chloroplasts (14, 15) and degraded in the mitochondria by a short, strictly regulated cyclic pathway (Fig. 1). In the anabolic part of the pathway, glutamate is converted to ⌬ 1 -pyrroline-5-carboxylate (P5C) 3 by P5C synthetase (P5CS), and P5C-reductase (P5CR) reduces P5C to Pro. In an alternative pathway, P5C is generated from ornithine by mitochondrial ornithine-aminotransferase (16, 17) and is reduced to Pro by P5CR in the cytosol. Thus, a possible movement of P5C among organelles and cytosol is assumed. P5CS is considered the key enzyme in the synthesis route, and its expression is increased by osmotic stress in many plants (11, 16 -18). A singl...