Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α ∈ − 1 , 1 is the coupling constant of Yukawa force to gravitational force, and λ ∈ 0 , ∞ is the range of Yukawa force. It is observed that as λ ⟶ ∞ , the mean-motion of the primaries n ⟶ 1 + α 1 / 2 and as λ ⟶ 0 , n ⟶ 1 . Further, it is observed that the mean-motion is unity, i.e., n = 1 for α = 0 , n > 1 if α > 0 and n < 1 when α < 0 . The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μ c = μ 0 + f α , λ , where μ 0 = 0.0385209 ⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μ c = μ 0 either for α = 0 or λ = 0.618034 , and the critical mass parameter μ c possesses maximum ( μ c max ) and minimum ( μ c min ) values in the intervals − 1 < α < 0 and 0 < α < 1 , respectively, for λ = 1 / 3 .
We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α ∈ − 1 , 1 is the coupling constant of Yukawa force to gravitational force, and λ ∈ 0 , ∞ is the range of Yukawa force. It is observed that as λ ⟶ ∞ , the mean-motion of the primaries n ⟶ 1 + α 1 / 2 and as λ ⟶ 0 , n ⟶ 1 . Further, it is observed that the mean-motion is unity, i.e., n = 1 for α = 0 , n > 1 if α > 0 and n < 1 when α < 0 . The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μ c = μ 0 + f α , λ , where μ 0 = 0.0385209 ⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μ c = μ 0 either for α = 0 or λ = 0.618034 , and the critical mass parameter μ c possesses maximum ( μ c max ) and minimum ( μ c min ) values in the intervals − 1 < α < 0 and 0 < α < 1 , respectively, for λ = 1 / 3 .
The existence and stability of noncollinear equilibrium points in the elliptic restricted three-body problem under the consideration of Yukawa correction to Newtonian potential are studied in this paper. The effects of various parameters (μ, ê, α, and λ) on the noncollinear equilibrium points are discussed briefly, and it is found that only ordinate of noncollinear equilibria E4,5 is affected by Yukawa correction while abscissa is affected by only mass parameter μ. The noncollinear equilibria was found linearly stable for a critical mass parameter μc. A critical point λ = ½ is also obtained for the critical mass parameter μc, and at this point, the critical mass parameter μc has maximum or minimum values according to α < 0 or α > 0, respectively.
This study is about the effects of Yukawa-like corrections to Newtonian potential on the existence and stability of noncollinear equilibrium points in a circular restricted three-body problem when bigger primary is an oblate spheroid. It is observed that ∂x0/∂λ = 0 = ∂y0/∂λ at λ0 = 1/2, so we have a critical point λ0 = 1/2 at which the maximum and minimum values of x0 and y0 can be obtained, where λ ∈ (0, ∞) is the range of Yukawa force and (x0, y0) are the coordinates of noncollinear equilibrium points. It is found that x0 and y0 are increasing functions in λ in the interval 0 < λ < λ0 and decreasing functions in λ in the interval λ0 < λ < ∞ for all α ∈ α+. On the other hand, x0 and y0 are decreasing functions in λ in the interval 0 < λ < λ0 and increasing functions in λ in the interval λ0 < λ < ∞ for all α ∈ α−, where α ∈ (−1, 1) is the coupling constant of Yukawa force to gravitational force. The noncollinear equilibrium points are found linearly stable for the critical mass parameter β0, and it is noticed that ∂β0/∂λ = 0 at λ ∗ = 1/3; thus, we got another critical point which gives the maximum and minimum values of β0. Also, ∂β0/∂λ > 0 if 0 < λ < λ ∗ and ∂β0/∂λ < 0 if λ ∗ < λ < ∞ for all α ∈ α−, and ∂β0/∂λ < 0 if 0 < λ < λ ∗ and ∂β0/∂λ > 0 if λ ∗ < λ < ∞ for all α ∈ α+. Thus, the local minima for β0 in the interval 0 < λ < λ ∗ can also be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.