Industrial engineering programs have typically adopted the new ABET accreditation criteria with more enthusiasm than other engineering programs, in part since the principles of continuous improvement and statistical measurement are commonly taught in most curriculums, and skills such as team work and data analysis are staples of modern IE curricula. However, such complementary skills should not limit the expertise that industrial engineers use to improve engineering programs. Mathematical models can be effective tools for both enhancing learning and assessment. This paper presents a number of modeling approaches that a team, consisting primarily of industrial engineers at the University of Pittsburgh has developed in conjunction with colleagues at the Colorado School of Mines over the course of several years to demonstrate the efficacy of this approach to ABET's requirement of continuous improvement. Using both logistic regression analysis and various neural network algorithms, we have employed empirical modeling to successfully improve retention in engineering, predict probation during the first year, and determine proper placement in math courses. We are also in the early stages of developing similar models to determine a student's intellectual development, determine student achievement based on students' attitudes towards engineering and themselves, as well as predict various EC 2000 outcomes based on students' attitudes. We describe each of theses models separately in this paper to emphasize the need for modeling as a viable tool for evaluation in engineering education.