We report the results of a series of chemical, EPR, ENDOR, and HYSCORE spectroscopic investigations of the mechanism of action (and inhibition) of GcpE, E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) synthase, also known as IspG, an Fe 4 S 4 cluster-containing protein. We find that the epoxide of HMBPP when reduced by GcpE generates the same transient EPR species as observed on addition of the substrate, 2-C-methyl-D-erythritol-2, 4-cyclo-diphosphate. ENDOR and HYSCORE spectra of these transient species (using 2 H, 13 C and 17 O labeled samples) indicate formation of an Fe-C-H containing organometallic intermediate, most likely a ferraoxetane. This is then rapidly reduced to a ferracyclopropane in which the HMBPP product forms an η 2 -alkenyl π-(or π∕σ) complex with the 4th Fe in the Fe 4 S 4 cluster, and a similar "metallacycle" also forms between isopentenyl diphosphate (IPP) and GcpE. Based on this metallacycle concept, we show that an alkyne (propargyl) diphosphate is a good (K i ∼ 300 nM) GcpE inhibitor, and supported again by EPR and ENDOR results (a 13 C hyperfine coupling of ∼7 MHz), as well as literature precedent, we propose that the alkyne forms another π∕σ metallacycle, an η 2 -alkynyl, or ferracyclopropene. Overall, the results are of broad general interest because they provide new mechanistic insights into GcpE catalysis and inhibition, with organometallic bond formation playing, in both cases, a key role.4Fe-4S protein | GcpE (IspG) | metallacycle