Aim. The aim of the work was to study the possibility of using an environmentally friendly strain of yeast of the genus Rhodotorula for the bioconversion into fodder carotenoid‐containing biomass of the secondary product of processing pea flour into a protein concentrate (whey).Material and Methods. We used a new strain of Rhodotorula mucilaginosa 111 and by‐products of processing pea and chickpea flour into protein concentrates and potatoes into starch (whey). We used standard and special methods for the analysis of serum and microbial‐vegetable concentrate (FMVC) namely: chemical; biochemical; microbiological; and the determination of toxicity with ciliates.Results. Optimal conditions for growing R. mucilaginosa 111 on pea whey were determined (temperature 16.9°C, pH 7.8, amount of inoculum 1.85%). More biomass was synthesized on pea whey than on chickpea and potato whey – 81 g/dm3. The mass fraction of protein in the biomass is 58.90±3.03% on dry matter and the rate of essential amino acids is 119– 243%. Lipids included 20% saturated and 78% unsaturated fatty acids, linoleic acid – 45.26±0.70%, oleic – 24.04±0.76%, palmitoleic – 6.46±0.31%, palmitic – 13.70±0.81%. The yeast produced phytoin derivatives, torulene, β‐carotene, torularodin and phytoin. FMVC from pea whey stimulated the growth of ciliates Tetrahymena pyriformis by 29.1%, from chickpea whey (by 18.6% more intensively than distilled water), while potato whey reduced its growth rate.Conclusion. The dry biomass of the ecologically safe new yeast strain R. mucilaginosa 111 contained complete proteins, lipids, minerals, and carotenoids necessary for feeding animals. Thus liquid pea whey can be used for its biokonversions, while avoiding environmental pollution.